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ABSTRACT

As a direct extension of Charnes' characterization of two-
t 1t , I

person zero-sum constrained games by linear programming, Aweshow! -.

how a general class of saddle value problems can be reduced to

a pair of uniextremal dual separably-infinite programs. These

programs have an infinite number of variables and an infinite

number of constraints, but only a finite number of variables

appear in an infinite number of constraints and only a finite

number of constraints have an infinite number of variables. The

conditions under which the characterization holds are among the

more general ones appearing in the literature sufficient to

guarantee the existence of a saddle point of a concave-convex

function.

The key construction involves augmenting a given player's

Ariginak'j:set 'of variables by generalized finite sequences

determined by the other player's constraint set and objective

function. A duality theory is developed which includes comple-

mentarity conditions, thereby making contact with the numerical

treatment of semi-infinite programming.

Key Words. Polyextremal Problems, Saddle Values, Separably-

Infinite Programming, Generalized Finite Sequence Spaces, Moment

Cones, Duality and Complementarity.
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I. Introduction: Constrained Saddle Value problems

In 1953, the first author in [3] showed how directly from

the data a bilinear saddle value problem with polyhedral

constraints could be replaced with a pair of uniextremal dual

linear programming problems. The basic saddle problem is the

following one. For a given m x n matrix A,

AT find max min pTAq
m n

pe]R qeJn

'e. subject to

(I) (II)

m n

j=l

pTD dT Bq >b

p>__O q O,

where D is an m x r matrix, B is an s x n matrix,

d-IR and beIR s.

The equivalent pair of dual linear programs is:

La

t.

I.

14
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Max O + yTb min 6 + dTx

3R, pIR m, ye3RS 6cm, qeR n, xe]R r

T T T 6 A+xae(n) - pTA + yTB 0 6e(m) - Aq + Dx 0

pT e1eTqPe(m) en =1

pTD d Bq > b

py >O q,x O,

where e(n) consists of n ones, e(m) consists of m ones.

Charnes posed the problem of finding a similar reduction

of biextremality to uniextremality, since for more general

situations in many fields of physics, engineering, economics,

etc., one can easily obtain biextremal characterizations, although

no uniextremal principle is apparent.

While existing work of Danskin [7], Gol'stein [12],

Rockafellar [15], Stoer-Witzgall [16] and others has shown how

to reduce the study of concave-convex saddle functions to pairs

of dual convex programming problems, except in the simplest of

cases when the internal extremizations can be explicitly carried

out, no reduction in the number of extremizations has been

* accomplished. And, as the work of Bracken, Falk, and McGill [1]

and Bracken and McGill [2] shows, explicit analysis and computation

of such convex programming problems with embedded extremizations

Jr l .. -- . ...
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is neither transparent nor facile. Thus, while such constructions

may be useful in establishing important general properties of

the saddle value problem, with them, as Poincarl might say, the
problem posed is "very little solved".

By means of a new construct, "separably-infinite programming"

[6], we have solved the problem for a general kind of separability

and a "functional" bilinearity in the saddle function which is
equivalent to:

Tfind sup inf(g(p) + pTAq + h(q)]
peP qeQ

where P and Q are arbitrary closed convex sets

in 3RM and IRn, respectively, and where g is concave and h

is convex.
We show that this nonlinear polyextremal problem is equivalent

to a pair of uniextremal dual separably-infinite programs under

assumptions which are among the most general ones appearing in

the literature for saddle value problems.

Our solution to this nonlinear saddle problem actually

rests upon finite linear programming methods in the sense that

when appropriate finite discretizations are made of the problem,

than an approximate solution is obtained by solving the classical

.constrained game case. The bridge between the finite linear

programming problems so obtained and the infinite structure of

the original nonlinear saddle problem is a class of generalized

I. .
By this we mean saddle functions of the form

MI,

" j=l i l (
where gi is closed concave on IRm, i h is closed

• convex on I n, j and aij 0 for all i and j.
-,,.ji = i& - '....*
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finite sequences, as employed in the theory of semi-infinite

programming. Generalized finite sequences permit the finite

discretizations themselves to vary freely, as a class of

probability measures with finite support subject to variation.

In this sense we obtain linearizations of the nonlinear poly-

extremal problem.

As in the classical two-person zero-sum game and its con-

strained game extension, our approach does not require the

specification of any perturbations which for example, in a func-

tional transform approach would necessarily be required in

advance of duality developments. As in elementary finite linear

programming, one need not be concerned about perturbations for

duality purposes. They are handled automatically.

In this context we show that the decision vector set of one

player is augmented by generalized finite sequences determined by

(a), the additional convex constraints on the other player's

variables and (b), the objective function or its "epigraph"

defined over the other player's original decision vectors. Thus,

player I's variables shall consist of the p-vectors plus

generalized finite sequences determined by linear inequality

representations of player II's constraint set Q and player II's

objective function h' The situation is a direct extension of

the duality obtained in the finite and classical constrained

game case. We illustrate the construction with a simple numerical

example in an economic context.

The particular approach to the study of saddle value problems

provides the opportunity for numerical treatment by semi-infinite
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programming methods [11], [13]. In particu.lar, the authors

in [6) have developed a system of nonlinear equations obtained

from separably infinite duality relationships to which Newton type

i methods apply.

We now formally introduce tne polyextremal problems and set

forth the main assumptions upon which our a.proach is based.

I

L
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2. Assumptions and Definitions Underlying the Polvextremal

Problems

The problem data are the following.

(i) a closed concave function g in m variables, peJRm ,

(ii) a closed convex function h in n variables, qe]R n

(iii) an m x n matrix A,

(iv) an explicit closed convex constraint set for the p-

variables given in linear inequality form,

P = (pe3RmIpTd(a) _< dm+(a), d(a)EIRm , dm+l(a)cR

for all a in a set 2),

and

(v) an explicit closed convex constraint set for the q-

variables given in linear inequality form,

= In lb( ) T q b n+l (P), b(O) R n , b n+ I ( ) R

for all in a set 8).

In this paper we investigate the following two polyextremal

problems:

find VM = sup inf(g(p) + pTAq + h(q)]
pEP qEQ

and

find VN = inf sup(g(p) + pTAq + h(q)).
qEQ peP

As a closed convex set in 3R x IRm, the hypograph of g,

(po,p) c IR mx mmpo _ g(p)), can be characterized by a system
1" ?
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of supporting hyperplanes of the form:

[(po,p) e 3R x mIV 0 (OPo + v(U)TP Vm+l(a) , v(a) FOR M,

v (aY), v (a) ER, v (a) 0 0 for all a in a
o m+l o

set 1. 1)

The eDigraph of the closed convex function h,

((qo,q) e IR x JR n h(q) _< qo can be characterized by a system

of the form:

( 0(q ,q) c IR x IRnuo0(y)qo + u(y)Tq > un+l(y) , u(y)ERn,

u0 (y), Un+l(y)eJR, u0 (y) > 0 for all y in a set 1). (2)

Definition. A supporting hyperplane of (1)

T
vo(O)po + V(a) p = Vm+l(a)

is termed a domain constraining vertical hVperplane if and only

if v (a) = 0, v(a) 3 0 and a positive multiple of v(a),
0

v +,(a) equals d(a), dm+l(a) for some aER. [In general 0

shall indicate a zero vector of appropriate, compatible dimension.]

Similarly a domain constraining vertical hyperplane in (2)
J

is one which is a positive multiple of the vector b(P), bn+l(8)

for some OES.

The following assumptions will prevail throughout the paper.

Assumption 1. Domain g n P 0, domain h n Q 0, and the

following subsets of P and Q respectively are non-empty,

2

4 f_
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~cx =(P nl dom gifprz+ h (q)) > -a)

QCD= (Q nl dom hl sup (g (p) + pTAq) < +c)o
pep

Assumption 2. Any vertical hyperp2.ane in either of the supporting

hyperplane systems (1) or (2) is d::nain constraining.

Assumption 3. 1. The convex cone in~ IR x JR mx JR generated by

(v (),va)-vml~r))~r~yU (O,d(f) -dm+,(a)) OLE U (0,0,-i)

is closed.

Assumption 3.2. The convex cone in. JR x IR n X MR generated by

(uo (y) ,u (y),-un 1 (y) ) YEUU (O~b($)-b+j(O)fl4E 1 U (0,0,q1)

is closed.

We turn now to the main construiction of this paper, namely

obtaining two dual infinite linear pr ograms stemming from VM

and VN
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3. Constructing Separably Infinite Programs from the Polvextremal

Problems

Program I. Find VI

sup E y(1)b n+I( ) + E Un+I(Y)N(Y) + PO (3)
0Y0

from among (po,p) e 3R x m, yeIR ( ,() generalized

finite sequence spaces, subject to

p Td(a) d d1 +i(c), all cER (4)

poVo(a) + p Tv(a) vm+l(a ), all U (5)

E y(O)b(p) T + Z 7(y)u(Y) T  PTA = T  (6)
Y

E (Y)u o(y) = 1 (7)Y

and

y O, X . (8)

In general, a generalized finite sequence space with respect

to a set W, denoted IR"(, is the linear space of all real valued

functions on W having only finitely many non-zero images.

Program I is a special case of Program P of the Appendix,

whose dual D becomes Program II (in the notation of Program I).
I.

r --. .A
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Program II. Find V =

inf q0 + E dm+(a)x(a) + E Vm+l(a)n(a) (9)
aa

from among (qoq) e IR x Rn, xem 3(

subiect to

b(OB)Tq bnlI) -g (10)

u 0 (y)qo0 + u(y) Tq > Un+1(Y), all ye' (11)

E V0 (a)?(a) = 1 (12)
a

-Aq + E d(a)x(t) + E v(a)i7(a) = 0 (13)

a

and

x>o, 70. (14)

According to the duality developments reviewed in the

Appendix, see also [6], Programs I and II satisfy the duality

inequality, namely if ((po,p),yX] is I-feasible and

((qoq),x,i) is II-feasible, then

Z y(O)bn l(0) + E Un+l(Y)\(Y) + P0
np Y l07t

qo + E dm+l()x(L) + E Vm+l(a)77(a). (15)
CL a

* The next task is to develop relationships between peP

introduced in Assumption 1 and feasible lists ((p op),y,?x of

Program I, and similarly for Program II. Actually, these

relationships are needed in order to establish inequalities

.*,- - !
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among all four program values, VM, VN, VI, and VII.

Lemma 1. Assume that P is not empty and that Assumption 3.2

00

holds. Then

(i) any pePoo is extendable to a feasible list (po,p)qySX)

of Program I, and

(ii) if ((pop),y,X)] is any I-feasible list, then P CPaO"

In particular, Program I is consistent.

Proof. (i) Let P P00 and assume to the contrary that it is

not extendable. This assumption implies that the following

program is inconsistent:

Program A

VA = sup E y(l)bn+ 1 1 8) + E Un+ll() 7)
Y

sublect to E y(l)b(l) + E u(y)\(y) pTA
Y

E uo(y)X(y) = 1
Yo

and y O, X > O.

The dual to the above program is:

. Program B

VB =inf q0 + pTAq

subiect to b(B)Tq bn+l( 1) al BS (16a)

'F Uo(y)q O + u(y) Tq Un~l(Y), Sk] yU. (16b)

11
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The inequalities (16a), (16b) are consistent because domain

h n Q 0 and the fact that (16b) is a supporting hyperplane

representation of the epigraph of h. Furthermore, for any

feasible (qo,q) we have

T TTqo + pTAq h(q) + pTAq inf(pTAq + h(q)) > - cqeQ

since peP 00 Therefore, VB  is finite. It therefore follows

from the closure of the moment cone determined by (16a) and (16b)

(Assumption 3.2) that Program A is consistent, which is a

contradiction. Therefore any peP O is extendable to a feasible

list for Program I.

(ii) Assume that ((p ,p),y,X) is I-feasible and assume to

the contrary that p/P O" Nevertheless, (16a) and (16b) are

consistent for the same reasons as above in part (i), but now

VB = -co (since P Pco by assumption). In this case the closureV B ,

of the relevant moment cone (Assumption 3.2) implies that Program A

is inconsistent. However, setting y = y, X X yields a

feasible list for A, which is a contradiction. It therefore

follows that pePao.

The completely symmetric and analogous result holds for

Program II under Assumption 3.1 with respect to the set Q0OD

We shall therefore view this case as also part of the statement

of Lemma 1. The next lemma presents what we shall term "poly-

extremal duality inequalities."

1!

I'
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Lemma 2. Let Assumptions 1, 2, and 3 prevail. Then

V, < sup inf(g(p) + pTAq + h(q)) . VII
P Q

and

oT

V, inf sup[g(p) + pTAq + h(q)) N VII.
Q P

In particular, VI and V1I are finite valued.

Proof. Since P, 0, I is consistent by Lemma 1, and so let

(po,p),y,X) be any I-feasible list. It suffices to take

Po g(p).

Given any q e Q n doam h, set qo = h(q). Multiplying (6) through

by q and using (10), (11) and the non-negativity of y,X yields:

pTAq = E y(O)b({)T + T

p Y

> y(O)bnl(P) + Un+l(Y) (Y) - E (ylqoxly 1 .

1 y Y

But the term to the right of the inequality is

E y(O)b(n+l() + E Un+l(y)"A(Y) - h(q),
pY

using (7). Therefore,

g(p) + E y(P)bn+1 (0) + E Un+l(y)A(y) _ g(p) + pTAq + h(q). (17)
~Y

Since the q employed in (17) was arbitrarily chosen inI.
Q n dom h, it follows that

12

r
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g(p) + E y(P)bn+l(0) + E Un+l(y)A(Y) inf(g(p) + pTAq + h(q)). (18)
Y qcQ

Therefore, (18) holds for every ((pop),y,A) feasible for I

and hence by Lemma 1, for every pePco. Therefore,

VI sup inf(g(p) + pTAq + h(q)) = sup inf(g(p) + pTAq + h(q)), (19)
PP O qEQ peP qEQ

the latter equality stemming from non-emptiness of Pa,"

On the other hand (17) yields an inequality on the respective

suprema, namely,

V, _ sup(g(p) + pTAq + h(q))
peP

for each qeQ. Hence

VI _ inf sup(g(p) + pTAq + h(q). (20)
qeQ peP

A completely analogous development involving Program II

and QCo 9 0 yields:

(a), the analog of (19) namely

VI I > inf sup(h(q) + pTAq + g(p)), (21)
qeQ peP

and

(b), the analog of (20) namely

VII sup inf(h(q) + pTAq + g(p)]. (22)
peP qeQ

The set of inequalities (18), (19), (21), and (22) give the

required statements of the lemma.
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4. The Main Duality Th2orems

We are now ready to translate the duality results given in

the Appendix to Programs I and II. First, we introduce the two

convex cones stemming respectively from the linear inequality

representations of the convex sets P and Q.

Cp is the convex cone spanned by

d (l a 0

( d l( c)) . (23)

while C. is the convex cone spanned by

b() U (( (24)

Theorem 1. Let Assumptions 1-3 prevail. Assume that

(po,p) E ER x IRm, p E O+P, (go + 0 O > Po. and (A p) e CQ

implies (po,p) = 0.

Then VI= VM = VN = VII and VI  is a maximum.

Proof. By Lemmas 1 and 2 it follows that both Programs I and II

rare consistent and finite valued. The theorem is a specialization

j of Theorem Al in the Appendix and so the main task is to define

the sets (a) O+KQ and (b) (yeIRmI (A Ty ) e CS) used in (Al)

there for Program I. The fact that the only vertical hyperplanes

permitted in support systems of the functions g and h are

domain constraining will also be used.

The recession cone in (a) becomes the set of those

(po,p) e IR x IRm which satisfy

r -* -
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p Td() 0 O, all wR (25)

and

PoVo (a) + p Tv(a) 0 0, all oeF. (26)

Now (25) is equivalent to p e O+P while (26) is merely

(po,p) 0 +(hypo g). Since 0 +(hypo g) = hypo(gO+) , (26) is

equivalent to

(go+) (p) > Po"

Translating the set specified in (b) into the context of

Program I becomes those (po,p) c 3R x IRm for which there
exs y R(&) (')

exist yem , , weR satisfying

0 E u o(y)M(y) (27)
Y

T
A p - Z b(P)y(P) + Z U(Y)My) (28)

0Y

po -E bn+l()y() - E Un+l(Y)A(Y) + w (29)
0 Y

and y > 0, X > 0, w > O.

The task is to show that any (po,p) satisfying (25)-(29)

must necessarily be 0 under the hypotheses of Theorem 1 above.

Observe that u (y) > 0 for all ye)u, and therefore

(Y) = 0 when u0 (y) > 0. Thus (27) is eliminated and some of

the variables in (28) and (29). We now take care of those A(y)

for which u (y) = 0.

I Let hO = (y4E1luo(y) = 0). As observed above, (28) becomes

ATp = E b(O)y(p) + E u(y)?(y). (30)
U 'd

....0- . . I I II '
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By Assumption 2 for each ye) o  there exists a positive scalar

k and some Peg such that

k u(y) = b(P).

For each Pcg, let
r

= (yeUl there exists ky > 0, kyu(Y) = b(O)). (31)

Then U go = e oven though some 8 may be empty. By taking

" to mean E ", a finite sum, we rewriteyesI Y YI N ( 1 yO, gp?(PO, YIE13

(30) as

AT p = E b(1) [y(O) + T E- .Y) (32)

Similarly (29) becomes

Po = -1b +11[y1P) + ( +. (33)
on+10[YO kY

Together (32) and (33) imply

ATP e E C O (34)
Po 1

while we are also given that p E O+P and (go+) (p) p P0

According to the fourth assumption in the theorem it must be

I . the case that (po,p) = 0. Therefore by Theorem Al, Program I

is consistent, V, = V11  and VI  is a maximum. Applying

Lemma 2 yields V =V -V =V
I = M N VIV1'

I I I 4n-- - - . .. .
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Corollary 1.1. The cone C is closed.

-Proof. Suppose (a,am+1) e cR m x JR is a limit point of the

cone C. Then it is a limit point of the entire cone specified

in Assumption 3.2, which is closed by assumption. Hence there

is an expression of (Oa,am+1 ) as the left-hand side of the

equations (27), (28), (29) in terms of the right-hand side

as indicated. The above algebraic argument then applies to

show completely analogous to (34), that (a a l) Q.
m+1

Another corollary of Theorem 1 is the following complementary

slackness result, which is merely a translation of Theorem 2 of

[6] in the context of Programs I and II.

Corollary 1.2. Let (po,p ,y , X be optimal for Program I and
(qo,q* *x* $77 )be optimal for Program II. Then

x * ()[ - dm+l (a)= 0 for all aER (35)

y* (0)[b(p)Tq - bn+1 (0)] = 0 for all OES (36)

7(a) [povoa) + p *Tv(a) - vm+(a) = 0 for all oag (37)

*()[Uo(Y)q o* + U() q - Un~l(y)] = 0 for all yEU. (38)

As Theorem 2A is a companion to and actually a corollary of

Theorem IA, we obtain the natural companion to Theorem 1.

I.

1

r , -iI I I ... . .. . . ,--
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iTheorem 2. Let Assumptions 1-3 prevail. Assume that

(qoq) e IR x IRn P q E O+Q, (hO+)(q) qo, and

Aq~(%) implies (q ,q) = 0.

Then V I = VM = VN VII and VII is a minimum.

Analogous to Corollary 1.1, the cone C is also closed.

Theorem 3. Let Assumptions 1-3 prevail. Assume

(i) p e O+P, (go+) (p) > p0 and

(ATp~) £CQ implies (po,p)= 0
PO

and

(ii) q E 0+Q, (hO+) (q) < qo and

fAq
Aq e CP  implies (%,q) =0.

I' /

Then I has an optimal solution (p*,g(p*),y ,X and II

has an optimal solution (q*,h(q*),x*,*] and for any such solution

p q is a saddle solution, i.e.

VM = V g(p + p* Aq + h(q)

Proof. By Theorems 1 and 2 optimal solutions exist and by

Corollary 1 equations (35)-(38) are satisfied.

Analogous to the proof of Lemma 2 we see that

I" - - -- -
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*T E T q* +E*YUYT

p Aq = O y(p)b(p) q + X ,*(y)u(y)Tq* .  (39)
Y

Applying (36) and (38) to (39) yields

p*TAq* = y*(P)b (0) - qo + E (Y) (Y)"

y n+1 0o '~

Adding P= g(p*) to both sides and transposing qo = h(q*),

we obtain

g(p*) + p*TAq* + h(q*) = E y*(O)bn+l) + E Un+l(Y)?*(Y) + Po

0Y0

=I = VII VM = VN

Theorem 3 is the main saddle value theorem of the paper.

The conditions underlying Theorem 3 and Theorems 1 and 2 are

among the common ones in the literature which guarantee finite

saddle-values and existence of saddle-points for the case when

the sets P and Q are unbounded. Roughly speaking when

conditions prevail to guarantee saddle points, then each of our

dual separably-infinite programs will have optimal solutions.

We briefly review some of the conditions in the literature.

I.

1*

r"-'
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5. Relation of the Assumptions of Theorem 3 to the Literature

Among rather general conditions sufficient for guaranteeing

a saddle-point are (a) and (b) of Theorem 37.3 in Rockafellar [151.

These conditions apply to more general concave-convex saddle

functions than the particular one we have studied, namely

K(p,q) = g(p) + pTAq + h(q)

for (p,q) E P x Q.

On the other hand, our theorems go beyond a saddle-point

result, namely showing the equivalence of a saddle-value solution

to the solution of two dual separably-infinite linear programs.

In the context of our saddle function, condition (a) of

Theorem 37.3 is equivalent to our fourth assumption in Theorem 2.

In the case at hand, condition (a) relates to directions of

recession of the convex function K(p,'), where pEP. A direction

of recession of this function, say q, satisfies

pAg + (hO+ ) (q) < 0.

Condition (a) states that

T+pTAq + (hO) (q) 0 for all p E ri P (40a)

implies p = 0. (4Ob)

Now in (40a), ri P may be replaced with P, and hence by

Lemma 1 of the Appendix, (40a) is equivalent to

10

.1'
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(Agq
(hO+) (q) E ci C

By Corollary 1.1, Cp is closed, and it is now straightforward

to check that Assumption 4 of Theorem 2, namely: q E O+0,

(hO+)(q) _ 0 and

Aq EC P  implies (q,q) = 0,

is equivalent to condition (a) of Theorem 37.3 [15].

Similarly, condition (b) is equivalent to the fourth

assumption of Theorem 1.

In the more general context of infinite linear programming

Fan introduced related asymptotic conditions and proved them to

be sufficient for duality theorems, [9].

I.

1
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6. A Simple Example of an Equilibrium in Economics

The following example is related to work of Charnes

and Cooper, Charnes and Carey, and Charnes and Thore concerning

equilibria in resource value-transfer economies [4] and private

ownership economies of Debreu type [8].

Let p1  and P2 denote respectively the price of a con-

sumer good and wages paid for work done to produce the single

good. As an output the consumer good yl shall be non-negative,

while the single input Y2  shall be non-positive. The set of

possible (ylY 2 ) combinations shall be termed the production

set Y, and shall be taken to be:

2

Y: =(yl YY2) C 3R2Iyl Y2 -1 Y2 -< o).

A system of linear supports for Y is the following:

1 y __ 2 - for all a < 0). (41)

((y1,y2 )1y1 . +2 2-2

The consumer shall be guided by a potential function of

p1 ,P 2 , given by

E(Pl,p 2) =.vIp - 1/3 P2.

For a given list of positive prices (plP 2 ) it shall be assumed

that the consumer demands

_ -(plP2) T 1 of the consumer good, (42)

while he is willing to supply

r° -
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- lP) -3 / (43)TE pI-= = 1/3

units of labor. (Supply is taken to be a negative number.)

Taking h(Plp 2 ) = -E(PIp 2 ), we may consider the following

support system for the epigraph of the convex function h:

(qo,Pl,P 2 ) ,

q +  1 1 1 2-- , for al y > 0. (44)

Viewing the producer as a profit maximizer we consider the

following polyextremal problem for the economy.

Find VM = sup inf ply, + p 2 Y2 - + 1/3P

y p
from among yEJR 2 2

,_pIR satisfvYing

Y2  O and P i 
1O, P2 O.

Let us now give the dual separably infinite programs

appropriately identified with the producer and consumer respectively.

Producer's Separably Infinite Program (I)

Find VI = sup E - IV ?(y) from among yeR 2 and ' (45)

a generalized finite sequence on IR (>O) which satisfy

I.

'At this point we are not insuring that the relevant moment cones
are closed as for example if (41) and (44) were canonically closed,
see [101, p. 12, and [15], page 200.

.. . . , , - ' -. . . . I " ... . .. . . .. .. . - i'
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+ r. " 2 / all C. < 0 (46)
2all

E X (y) = 1 (48)
Y

and

C11t2 O, Y2 O, , >0. (49)

An optimal solution to (I) is:

y= 3/4, X (y) =1, X(y) = 0 for y y y , = 2= 0,

and

Yl =  y2 = - with V1

Observe that the producer does not need to know the specific

prices which the consumer will select.

Consumer's Separably Infinite ProQram (II) 2
Find V = inf q + £ " x(a) from among peIR and (50)

x a -generalized finite sequence on IR (<0 ), which satisfy

- - for all y > o (51)|°qo + P, 23 -

12,.-
i-w -n---
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and

PI 1 0

=x )- x(a) = (2pI

and

Pl ,OP2 >_. o, x > o . (53)

An optimal solution to (II) is:

=L 3, x*(a) = 3/4, x (a) -=0 for a/a

and

* - 3-3 V3
pl =3/4, P2 8 ,with V 1 1 4.

Note that the consumer's problem determines the full set

of prices p1 ,p2 .

Producer consumer equilibria is checked as follows.

* * 3
Producer Equilibrium. Taking prices p= 3/4 and * = -

1P 2  8

the producer seeks

max plyI + p2y2

subject to Yl YX 2 ' Y2 0 0.

A 1 A
This problem has a unique solution y - and = =

A * A *
Since Y = Y. and Y2 Y2 . the producer is in equilibrium.
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! ~ Consuamer Eguilibrium**

According to (42) and (43), at prices pp the consumer

demands

I (P'P) =2 - =- -

and is willing to supply (a negative number by convention)

___E * 1
'N (pl,) = _ .

nd * 6 E ** *
Since (pl,P2) = and = Y2 1 the

consumer is also in equilibrium.

An important conclusion from this simple exanple is that

each of the problems I and II has its own individual character.

The basic purpose of the producer's problem I is to determine

outputs and inputs. It may derive implicitly some or all of the

optimal prices of outputs and inputs. Determining the full set

of prices is however, the main thrust of the consumer's problem II.

Moreover, the parametric form of each player's decision

vector in terms of generalized finite sequences has an economic

interpretation. For the producer, (47) says that an output-

!, input vector y must be a convex combination of the consumer's

vectors of demand and supply, VE(y). For the consumer, (52) says

, that the price vector p should be a convex combination of
i. vectors normal to the frontier of the production set.

7°_

d0
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7. Conclusions

In this paper a new approach has been developed to solve

polyextremal problems, specifically the "maximin" and "minimax'

variety. Conceptually, the procedure is to decouple or de-

centralize the jointly defined problem into two dual separably

infinite programs. These infinite programs possess special

structure amenable to numerical treatment by semi-infinite

programming methods, and do not involve any internal extremizations.

Basically the structure requires an augmentation of each

player's original variables by generalized finite sequences

determined by the other player's information sets. The conditions

under which the polyextremal problem may be solved by two dual

linear programs are among the most general appearing in the

literature, permitting for example, unboundedness in each of

the explicit constraint sets.

The procedure has been illustrated in the solution of a

simple producer-consumer polyextremal economy, where the producer

seeks to maximize profits and the consumer seeks to minimize

expenditures while achieving some implicit satisfaction level.

Each of the two players has his own separably infinite program.

The producer's program determines optimal inputs and outputs,

while the consumer's program determines optimal prices of inputs

and outputs without specific knowledge of the producer's optimal

decisions. Thus, each player modifies his choices in the lightI.
of constraints and goals associated with the actions of the other

player, but he does not require knowledge of the other players

choice itself.
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The example was motivated by work of Charnes and Carey,

Charnes and Cooper, and Charnes and Thore on problems of economic

equilibrium. Further work is planned in this area, in particular,

interpreting the assumptions underlying the saddle value theorems
• : in this paper in the context of private ownership and resource

value transfer economies. Additional applications are envisioned

in physics and engineering.

.N=

I.

4

1



Appendix: An Extension of a Duality Result of [61

The duality theorems of this appendix could be derived

as corollaries of infinite linear programming results of Fan

[9]. We present a simple derivation based on elementary

separation in finite dimensions, Consider the following dual

pair of separably infinite programs.

Program P. Let S C R k R Itand let u(*) :S R,

u iI S - R, v(. -R n v(. R~, ce bIER

and A E Rmn.
T

Find V P = SUP F- un+l (t)?X(t) - b y
tE S

from among ?(-) e R (8 -n yRm which satisfy

E u(t)X(t) - ATY = C (la)
te S

v T(r)y v.+.I(r) for all rcQ (b

and

X(-);> 0(lc)

and

Program D

glasd VD =inf c TX + _r vm+1C(r) fl(r)
rEQ

from among tRnand i R(.) which satisfy

u T(t) x ;> u n~(t) for all teS (2a)

-Ax + E v(r) t(r) =-b (2b)
rEQ

A and

i( 0. (2c)
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The following convex sets will be used in the duality

developments.

KQ a -yeRmjvTCr)y _< v+l(r) for all reQ),

KS E (xeRnluT(t)x > Un~llt) for all tcS),

C C Rm+l  is the convex cone generated by

v r) (:)}

Cs ._R n+l is the convex cone generated by

So tes} U

C and C are often called moment cones.

The following lemma is known but its proof is included

for completeness.

Lemmr.. Assume that K. and K are non-empty.

Q S

4Then

(la) (h) e cl C. (closure of CQ) if and only if Tg h, -h

for all WeKQ

- 17 and

(lb) (h) 6 cl CS if and only if wTg > h for all weK S .

Proof. The proof of both parts is similar, so (lb) is proven.

We first show for f ixed gem , he3R that the following statement

-- i



32

ux jR , w e W ,Tg9 _W h ;>0 (3a)
n+l n+

whenever

W U(t) - W n+iun+i(t) > 0, for each tes (3b)

and of0" (3c)

is equivalent to

WeJR n, wTg > h (4a)

whenever

WT u(t) >_ un+l (t), for each tFeS". (4b)

To prove the equivalence assume the first statement

[(3a)-(3c)I and let WEIR n satisfy (4b). Merely setting

W n+l :'- 1 yields that (w,w n~1 ) satisfies (3b) and (3c) and hence

by (3a)

w Tg- h >0 proving (4a).

Let us now assume the second statement to be valid. Let

ZE]Rn n, wn+lemR satisfy (3b) and (3c). We wish to show (3a)

holds. Two cases arise.

case 1 wnlU > 0. In this case wU = Z/Wn satisfies (4b) and

hence by assumption must satisfy (4a) which in turn implies

-Jr -w g - W n+1h 0, i.e., (3a) holds in this case.
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Case 2 Wn+ 1  0. In this case wTu(t) 0 for each tES.

ASince KS is non-empty there exists wEKs, and so it follows that

A
w + Mw satisfies (4b) for M arbitrarily large. Therefore,

by assumption,

A d- T(w + MW)Tg > h, for any positive M. (5)

-T

But it follows from (5) that w g > 0, which is (3a) for

this particular case. Therefore in this case also we have shown

(3a) holds whenever (3b) and (3c) do. Hence the first statement

follows from the second, and they are therefore equivalent.

An infinite version of the Farkas Lemma states that

(9)E cl C

if and only if (3a) holds whenever (3b) and (3c) hold, see [15].

The equivalence established above provides the equivalence

required in the statement of the lemma.

For a given non-empty convex set K, the recession cone

of K, denoted O+K is the set of all vectors y such that

x + Xy e K for every A > 0 and xeK, see [15). For a linear

transformation A, the subspace of all vectors z such that

. Az = 0, is termed the kernel of A and denoted ker A.

With these preliminary definitions we are ready to prove

* the first of two symmetric theorems.I.

Theorem AJ. Assume that Program D is consistent and finite

* valued and that the convex cone CS  is closed. Let the following

assumption prevail
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AT
(Al) 0 fl n ~ (Y~mA (- T= S (0).

Then Program P is consistent, VP VDp and VP is a maximum.

Proof. Program D can be written in the following form.

Find VD = inf z

-from among xen 77(-) E R Q) zeR, We which satisfy

Tu (t) x '> U+li(t) for all teS

Ax~ ~ v(r)0b

+ E \v +i (r)) _+o) W}1

and

This is equivalent to the following form.

Find VD =inf z

from among xER, npzER which satisfy

( bAx
z -cTxJECQ

Let us define the set K c l

(b AxT xcKSand z<VD

Since K S is convex, K is also convex. Now VD is the value

of Program D. Thus there cannot be an C Sand z < VD such that

- Ai
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Hence

n~ 0.

Since K and -CQ are disjoint, non-empty convex sets,

we can find a hyperplane that separates them ([16] Theorem 3.3.9

or [15] Theorem 11.3). That is, there exist yeRm and

YM+1 E R, not both zero, such that

yTd + ym+Idm+l > 0 for all (6)

and

y T(b - Ax) + Ym+l(z - cx) K 0

for all xEKS and z < VD. (7)

Now ()v E -) Q for all reQ and ( E -%C. Thus (6)

implies that

-y Tv(r) + ym+ivm+l(r) ; 0 for all rcQ (8)

Ym+l ;- 0.

We consider two cases on the value of Ym+l"

Case 1 Ym+l > 0. We may take. Ym+l = 1. Then (8) and (7) yield:

I. yT
y v(r) _< v M(r) for all rEQ (9)

and

y T(b - Ax) + (z - c Tx) 0 0 for all xeK S and z < VD.
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This last inequality can be written as

xT(Ay + C)>bTy +z for all xEK S and z < V

By Lemma 1(lb), this is equivalent to

-b T z E CS for all z < D

Since CS is closed,

(-b Ty c ) ECs.

Thus there exist a X(-) E R ()and WER which satisfy

A Ty +c E u(t)?,(t) (10)
tES

-b Ty - VD Z- un~l(t)N(t) + w (11)
tE S

X\(-) ; 0 and w ;>0. (12)

From (9), (10), (12) it follows that y,?X is feasible

for Program P, and hence E u n+l (t)?\(t) - bTy K Vi,* But the
t

duality inequality [VP e D D~Eu~~)~t - b y
t

from (11) and (12) combine to show that VP is indeed a finite

maximum equal to V
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Case 2 Ym+l = 0. It follows from (8) that

y Tv(r) _< 0 for all reQ. (13)

According to the definition of KQ, (13) means that y e 0.KQ

On the other hand in this case, (7) becomes

yT(b - Ax) _< 0 for each XEK S. (14)

Applying Lemma 1, (lb), to (14) implies

since C Sis closed by assumption. Hence

Y E 0+ K. n( ATY t E C

\b~y %,

and therefore by assumption (Al), y = 0. Hence Case 2 cannot

happen because (y,ym+l) / 0. Therefore only Case 1 can occur,

completing the proof of Theorem 1.

Theorem Al has a companion starting with consistency of

Program P. It can be proved by rewriting P as a minimization

under appropriate variable changes and applying Theorem 1.

Theorem A2. Assume that Program P is consistent and finite

valued and that the convex cone CQ is closed. Let the following

property prevail.

+( ) CA}

(A2) O Ks n (0).

Then Program D is consistent, VP = V and V is a minimum.

Vp v D v D a- minimum.-
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